Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Andrei S. Batsanov, ${ }^{\text {a }}{ }^{*}$ Richard F. Giles, ${ }^{\text {b }}$ Michael R. Probert, ${ }^{\text {a }}$ Gillian E. Smith ${ }^{\text {c }}$ and Andrew Whiting ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, England, ${ }^{\mathbf{b}}$ INRS-Énergie, Matériaux et Télécommunications, Université du Québec, Varennes, Québec, Canada J3X 1S2, and ${ }^{\text {c }}$ GlaxoSmithKline Research and Development Ltd, Old Powder Mills, Leigh, Nr Tonbridge, Kent TN11 9AN, England

Correspondence e-mail:
a.s.batsanov@durham.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.043$
$w R$ factor $=0.122$
Data-to-parameter ratio $=16.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)aniline

In the title compound, $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{BNO}_{2}$, the amino group is less pyramidal than in aniline, only one of its H atoms forming a strong hydrogen bond.

Received 21 December 2005 Accepted 23 December 2005 Online 7 January 2006

Comment

In the course of our studies (Giles et al., 2003; Coghlan et al., 2005) into the potential catalytic utility of bifunctional compounds (Rowlands, 2001) containing both a nitrogenbased Lewis base and a boron-based Lewis acid, we turned to the title compound, (I), as a protected precursor for the synthesis of phenylguanidine-2-boronic acid derivatives, which we were interested in as bifunctional catalysts. Unfortunately, synthesis of such compounds proved unsuccessful, producing a complex mixture of products.

(I)

Compound (I) was prepared by a modified version of the procedure reported by Vogels et al. (1999), who synthesized it en route to various platinum complexes and imines (Vogels et al., 2001; King et al., 2002).

The asymmetric unit contains one molecule. The B atom has planar-trigonal coordination; the coordination plane is inclined by 10.4 (2) ${ }^{\circ}$ to the benzene ring plane. The borolane ring adopts a twist conformation, the C 7 and C 8 atoms deviating from the BO_{2} plane by 0.20 (2) and 0.27 (2) \AA in opposite directions, with two equatorial (C 9 and C 11) and two axial (C10 and C12) methyl substituents. The amino group forms one strong intermolecular hydrogen bond (Table 2). The remaining amino hydrogen atom, H2N, points towards the $p \pi$ orbital of the benzene C 4 atom of another molecule. The $\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{C} 4^{\text {ii }}$ distance $[2.61$ (2) \AA, corrected for the idealized $\mathrm{N}-\mathrm{H}$ bond length of $1.01 \AA$; symmetry code: (ii) $1-x, \frac{1}{2}+y$, $\left.\frac{1}{2}-z\right]$, which is considerably shorter than the sum of van der Waals radii of $2.88 \AA$ (Rowland \& Taylor, 1996) and the N$\mathrm{H} \cdots \mathrm{C}$ angle of $167(2)^{\circ}$ suggest that this contact is a weak hydrogen bond.

The N atom in (I) has a less pyramidal geometry than in unsubstituted aniline. The dihedral angle between the benzene ring and the NH_{2} group (so-called 'inversion angle'), which equals $37-38^{\circ}$ in both solid (Fukuyo et al., 1982) and gaseous (Lister et al., 1974) aniline, is reduced to $16(2)^{\circ}$ in (I). The

Figure 1
Molecular structure of (I). Atomic displacement ellipsoids are drawn at the 50% probability level.
$\mathrm{C} 1-\mathrm{N}$ bond in (I) $[1.3790$ (18) \AA] is shorter than in aniline [solid: 1.392 (6) \AA; gas: 1.402 (2) \AA]. Both differences indicate that the boryl substituent enhances the interaction of the electron lone pair of N with the aromatic ring and hence $s p^{2}$ hybridization of the N atom. It is noteworthy that, in the two complexes of Pd and Pt where molecule (I) acts as an N -ligand (Vogels et al., 1999), the $\mathrm{C}-\mathrm{N}$ bond is lengthened to 1.438 (4) and 1.45 (1) \AA, respectively, as the π-conjugation is disrupted, the lone pair being donated to the metal atom instead.

In (I), the N atom deviates by 0.081 (2) \AA from the benzene ring plane, but its H atoms are situated on the other side of this plane, 0.04 (2) \AA from it. A similar, but stronger, distortion is shown by the aniline molecule in its crystal structure, where the amino group both donates and accepts a hydrogen bond.

Experimental

3-Aminophenylboronic acid $(1.00 \mathrm{~g}, 6.45 \mathrm{mmol})$ and pinacol $(0.763 \mathrm{~g}$, $6.45 \mathrm{mmol})$ were added to ethyl acetate $(150 \mathrm{ml})$. After stirring for 20 h , the solution was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated to yield a brown solid, which was dissolved in a minimal amount of ethyl acetate and absorbed on to silica gel. Purification was by silica gel chromatography (hexane/ethyl acetate, $1: 1$ as eluant), which gave an orange oil which crystallized on standing for 48 h to give large orange crystals of (I) [yield 1.31 g , 93%; m.p. $363 \mathrm{~K}, c f .366 \mathrm{~K}$ according to Vogels et al. (1999)]. UV ε, $\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~cm}^{-1}(\mathrm{MeCN}) 215$ (ε 27410), $246(\varepsilon 7100), 311(\varepsilon 2560)$; MS (ES +) $220.1\left(M^{+}+\mathrm{H}\right)$. Found: C 65.77, $\mathrm{H} 8.31, \mathrm{~N} 6.31 \% ; \mathrm{C}_{12} \mathrm{H}_{19} \mathrm{BNO}_{2}$ requires: $\mathrm{C} 65.70, \mathrm{H} 8.28, \mathrm{~N} 6.39 \%$. All other spectroscopic and analytical details were identical to those reported by Vogels et al. (1999).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{BNO}_{2} \\
& M_{r}=219.08 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=9.823(1) \AA \\
& b=10.658(1) \AA \\
& c=12.547(1) \AA \\
& \beta=109.10(1)^{\circ} \\
& V=1241.3(2) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Bruker SMART 6K CCD area-
detector diffractometer ω scans
Absorption correction: none
7402 measured reflections
2697 independent reflections

> 1905 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.029$
> $\theta_{\max }=27.0^{\circ}$
> $h=-12 \rightarrow 12$
> $k=-13 \rightarrow 11$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.122$
$S=1.04$
2697 reflections
161 parameters

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{B}$	$1.3657(18)$	$\mathrm{O} 2-\mathrm{C} 8$	$1.4703(16)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.4714(16)$	$\mathrm{N}-\mathrm{C} 1$	$1.3790(18)$
$\mathrm{O} 2-\mathrm{B}$	$1.3712(18)$	$\mathrm{C} 3-\mathrm{B}$	$1.550(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$118.32(13)$	$\mathrm{O} 1-\mathrm{B}-\mathrm{C} 3$	$124.76(13)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$118.19(13)$	$\mathrm{O} 2-\mathrm{B}-\mathrm{C} 3$	$121.89(13)$
$\mathrm{O} 1-\mathrm{B}-\mathrm{O} 2$	$113.35(13)$		
$\mathrm{B}-\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8$	$-22.51(14)$	$\mathrm{C} 8-\mathrm{O} 2-\mathrm{B}-\mathrm{O} 1$	$11.01(16)$
$\mathrm{B}-\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 7$	$-23.98(14)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{B}-\mathrm{O} 1$	$9.9(2)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 2$	$27.80(13)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{B}-\mathrm{O} 2$	$8.3(2)$
$\mathrm{C} 7-\mathrm{O} 1-\mathrm{B}-\mathrm{O} 2$	$8.34(16)$		

Table 2
Hydrogen-bond geometry ($\left(\mathrm{A}^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N}-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O}^{\mathrm{i}}$	$0.92(2)$	$2.20(2)$	$3.0743(17)$	$158.4(16)$
Symmetry code: (i) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.				

Amino H atoms were refined in an isotropic approximation, giving $\mathrm{N}-\mathrm{H}$ distances of 0.92 (2) and 0.85 (2) \AA. Phenyl H atoms were treated as riding in idealized positions with $\mathrm{C}-\mathrm{H}$ bond lengths of $0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. Methyl groups were refined as rigid bodies rotating around the $\mathrm{C}-\mathrm{C}$ bonds, with $\mathrm{C}-\mathrm{H}$ bond lengths of $0.98 \AA$ and a common refined $U_{\text {iso }}(\mathrm{H})$ for all three H atoms of each methyl group.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We thank the EPSRC for a DTA studentship (for RG), GlaxoSmithKline for CASE funding (RG) and the EPSRC National Mass Spectroscopy Service Centre at Swansea.

References

Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA. Coghlan, S. W., Giles, R. L., Howard, J. A. K., Patrick, L. G. F., Probert, M. R., Smith, G. E. \& Whiting, A. (2005). J. Organomet. Chem. 690, 4784-4793. Fukuyo, M., Hirotsu, K. \& Higuchi, T. (1982). Acta Cryst. B38, 640-643.

organic papers

Giles, R. L., Howard, J. A. K., Patrick, L. G. F., Probert, M. R., Smith, G. E. \& Whiting, A. (2003). J. Organomet. Chem. 680, 257-262.
King, A. S., Nikolcheva, L. G., Graves, R. G., Kaminski, A., Vogels, C. M., Hudson, R. H. E., Ireland, R. J., Duffy, S. J. \& Westcott, S. A. (2002). Can. J. Chem. 80, 1217-1222.
Lister, D. G., Tyler, J. K., Hog, J. H. \& Wessel Larsen, N. (1974). J. Mol. Struct. 23, 253-264.

Rowland, R. S. \& Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391
Rowlands, G. J. (2001). Tetrahedron, 57, 1865-1882.
Vogels, C. M., Nikolcheva, L. G., Norman, D. W., Spinney, H. A., Decken, A., Baerlocher, M. O., Baerlocher, F. J. \& Westcott, S. A. (2001). Can. J. Chem. 79, 1115-1123.
Vogels, C. M., Wellwood, H. L., Biradha, K., Zaworotko, M. J. \& Westcott, S. A. (1999). Can. J. Chem. 77, 1196-1207.

